Reductive addition of polychlorofluoroalkanes to fluorocarbonyl compounds

S. A. Postovoi, E. M. Kagramanova, E. I. Mysov, and Yu. V. Zeifman*

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085

Dichlorofluoromethyl- and 1,1-dichloro-2,2,2-trifluoroethyl-containing alcohols were synthesized by the reductive addition of CCl₃F or CCl₃CF₃ to fluorocarbonyl compounds under the action of amalgamated aluminum.

Key words: fluorocarbonyl compounds, reductive polychlorofluoroalkylation, synthesis and reactions of polyfluoroalcohols.

It is known that reductive addition of CCl₄ to aromatic aldehydes or fluoroketones occurs under the action of activated Al. This is a convenient method for the preparation of alcohols containing a trichloromethyl group. ^{1,2}

As it turned out, CCl₃F readily reacts in a similar fashion* to give alcohols with a dichlorofluoromethyl group 1a—d in satisfactory yields from trifluoromethyl ketones and from benzaldehyde and its para-fluoroderivative (Scheme 1).

Scheme 1

R
$$C = 0 + CCl_3F$$
 Al/HgCl₂, H⁺ R $C = 0$ CCl_2F^2 OH

$$R = R' = CF_3^1$$
 (a); $R = CF_3^1$, $R' = Ph$ (b);
 $R = H$, $R' = Ph$ (c); $R = H$, $R' = 4-F-C_6H_4$ (d);

The similar reaction of CBr_3F and hexafluoroacetone (HFA) afforded (CF_3^{-1})₂C(OH)CBr₂F² (alcohol 2).

It should be noted that CCl₃F in combination with Zn has been previously used for the reductive chlorodifluoromethylation of N,N-dimethylformamide on the carbonyl group in its adduct with trialkylchlorosilane. The reductive addition of CCl₃F to non-fluorinated ketones initiated with a Mg—LiCl system has been also described (in this case, the intermediate formation of CCl₂FLi has been assumed). 5

Trifluoroacetophenone and HFA also enter the reaction with CCl_3CF_3 to afford alcohols (3a,b) (Scheme 2).

Scheme 2

$$CF_3$$
 $C=O + CCI_3CF_3 \xrightarrow{AI/HgCI_2, H^+} CF_3^1$
 $C=O + CCI_3CF_3$

 $R = Ph (a), CF_3 (b),$

At the same time, on the reaction of HFA with CCl₃Me and Al, the reductive dimerization of this fluoroketone mainly takes place, and the corresponding alcohol, (CF₃)₂C(OH)CCl₂Me, is formed only as an admixture to perfluoropinacone. We failed to carry out the reaction of freons CF₂Cl₂ and CF₃CH₂Cl with HFA and Al (in this case, only the formation of pinacone from HFA occurred).

 α,α -Dichloroalcohols 1a and 3b, like their trichloromethyl analogs,² readily undergo dehydrochlorination with aqueous alkali to afford chloroepoxides (4a,b) (Scheme 3).

Scheme 3

1а и 3b
$$\frac{\text{NaOH}}{\text{H}_2\text{O}, 80-100 °C}$$
 $\frac{\text{CF}_3}{\text{CF}_3^2} \text{C-C} \stackrel{\text{CI}}{\nearrow}$ 4a,b

Alcohol 3b can also be used for the synthesis of chloroolefin (6), which has been previously obtained from $Ph_3P=C(CF_3)_2$ by a Wittig reaction (Scheme 4).

^{*} For a previous communication, see Ref. 3.

Scheme 4

3b
$$\frac{(CF_3CO)_2O}{C_5H_5N}$$
 $(CF_3^1)_2C - CCI_2CF_3^2$ $\frac{Zn \ powder}{monoglyme}$ $(CF_3)_2C = CCI_2CF_3^2$ $\frac{Zn \ powder}{monoglyme}$ $(CF_3)_2C = CCI_2CF_3^2$ $\frac{SbF_5}{O-CF_2^2}$ $(CF_3)_2C - CFCI_2CF_3^2$ $O-CF_2^2$ $O-CF_2^2$ $O-CF_2^2$

We found a significant difference in the reactions of dichloroalcohol 3b and $(CF_3)_2C(OH)CCl_3$ with SbF_5 . In the latter case, the exchange of chlorine for fluorine occurs and $(CF_3)_3COH$ is readily formed.² Alcohol 3b undergoes intramolecular dehydrofluorination to afford dichlorooxetane (7) followed by the exchange of chlorine for fluorine to form monochlorooxetane (8). Intramolecular cyclization of this kind, with the participation of terminal CF_3 groups in the medium of SbF_5 , has been recently observed in a series of perfluoroketones, α -diketones, and α -oxides.⁷ The structures of oxetanes 7 and 8 are confirmed by the mass spectral data; in particular, the ions that are formed by scission of the four-membered cycle into two halves,

 $[(CF_3)_2C=CCIX]^+$, $[(CF_3)_2C=O]^+$, and $[CF_2=CCIX]^+$ (X = CI, F), are typical of these compounds along with the $[M-F]^+$ and $[M-CF_3]^+$ ions.

Experimental

¹⁹F NMR spectra were recorded on a Bruker-200SY instrument (188.3 MHz) in CCl₄ with CF₃COOH as the external standard. Mass spectra (EI, 70 eV) were obtained on a VG-7070E spectrometer.

2-Dichlorofluoromethylhexafluoropropan-2-ol (1a). A. HgCl₂ (1.4 g) was added to Al chips (2.6 g), preactivated with a 10 % solution of KOH, in abs. DMF (100 mL) in a flow of argon with stirring. After completion of the exothermic reac-

Table 1. Physicochemical characteristics and ¹⁹F NMR spectra of compounds 1b-d, 2-5, and 7

Com- pound	Yield (%) (method)	B.p./°C (p/Torr)	n _D ²⁰	Found (%) Calculated			Molecular formula	δ ¹⁹ F (<i>J</i> /Hz)
				С	Н	F		
lb	60.5 (B)	75—76 (2)	1.4790	38.04 38.99	2.16 2.17	26.82 27.44	C ₆ H ₆ Cl ₂ F ₄ O	-6.29 (d, F ¹); -13.81 (q, F ² , $J = 12$)
1c	39 (B)	92-95 (3)	1.5322	<u>46.56</u> 45.93	3.16 3.35	8.87 9.10	C ₈ H ₇ Cl ₂ FO	-13.9 (d, $J_{F-H} = 7.5$)
1 d	61.7 (B)	85—87 (2)	1.5125	<u>42.44</u> 42.21	2.72 2.64	17.10 16.76	C ₈ H ₆ Cl ₂ F ₂ O	-12.5 (d, F^2); 34.0 (s, F^1 , $J_{F-H} = 7.5$)
2	30 (A)	47—49 (2)	1.3010	13.65 13.41	<u>0.27</u> 0.28	38.52 37.15	C ₄ HBr ₂ F ₇ O	-13.06 (hept, F ²); -7.25 (d, F ¹ , $J = 12$)
3 a	57.5 (B)	83—85 (2)	1.4630	36.49 36.70	1.82 1.83	35.08 34.86	C ₁₀ H ₆ Cl ₂ F ₆ C	$0-7.52 \text{ (q, F}^1\text{); } -5.85 \text{ (q, F}^2\text{, } J = 5\text{)}$
3b	79 (A)	122—123	1.3485	18.72 18.81	<u>0.39</u> 0.31	<u>53.61</u> 53.51	C ₅ HCl ₂ F ₉ O	-7.0 (q, F ¹); -3.0 (hept, F ² , $J = 7.5$)
4a	35.4 (C)	35—36	<1.3	20.38 20.65		57.07 57.20	C ₄ CIF ₇ O	-7.1 (m, F ¹ ,F ²); 11.4 (m, F ³);
4b	33 (C)	58	<1.3	<u>21.17</u> 21.24		<u>58.73</u> 60.53	C ₅ CIF ₉ O	-10.8 (qq, F^1); -9.7 (q, F^2); -5.5 (q, F^3 ; $J_{F^1-F^2} = 11$, $J_{F^1-F^3} = 14$)
5	86	129—130	1.3320	20.24 20.24		<u>54.65</u> 54.94	C ₇ Cl ₂ F ₁₂ O ₂	-12.2 (q, F ¹); -2.86 (hept, F ²); -0.93 (s, F ³ ; $J_{F^1-F^2} = 6$)
7	26	86—87	1.3280	20.18 20.07		<u>51.09</u> 50.84	C ₅ Cl ₂ F ₈ O	-7.26 (s, F ²); -4.78 (s, F ¹)

tion, CCl₃F (22 g) was added at 0-5 °C. Then HFA (16 g) was passed through the mixture for 0.5 h at ≤ 30 °C. After the exothermic reaction was completed, the mixture was stirred for 2 h at 45-50 °C and poured into dilute HCl, the organic layer was extracted with ether, the ether was distilled off, and the residue was distilled in vacuo (20 Torr) over conc. H₂SO₄. Repeated distillation afforded 13.2 g (51 %) of alcohol 1a, b.p. 103-105 °C. Its ¹⁹F NMR spectrum was identical to that described previously.⁸

3,3-Dichloro-2-phenylhexafluorobutan-2-ol (3a). B. A solution of trifluoroacetophenone (5 g) in CCl₃CF₃ (12 g) was added dropwise with stirring to a mixture of Al (1.4 g) and HgCl₂ (0.7 g) in abs. DMF (55 mL). After the exothermic reaction was completed, the mixture was stirred for 3 h at 40-50 °C and poured into dilute HCl. The oil that formed was extracted with ether, dried with MgSO₄, and the residue was distilled to afford alcohol 3a.

1-Chloro-1,3,3,3-tetrafluoro-2-trifluoromethyl-1,2-epoxypropane (4a). C. A solution of NaOH (3 g) and alcohol 1a (9.9 g) in H_2O (15 mL) was boiled with a Dean-Stark trap, and the organic layer from the trap was distilled over conc. H_2SO_4 to afford oxirane 4a.

3,3-Dichloro-2-trifluoroacetoxy-2-trifluoromethylhexa-fluorobutane (5). Pyridine (14 mL) was added dropwise with cooling by ice water to a mixture of alcohol 3b (44 g) and trifluoroacetic anhydride (32 g). The mixture was kept for 0.5 h at 20-30 °C. Crude trifluoroacetate 5 was then distilled in vacuo (10 Torr), shaken with conc. H_2SO_4 , and distilled again.

The yields, physicochemical characteristics, and ¹⁹F NMR spectral data of compounds **1b-d**, **2-5** are given in Table 1.

3-Chloro-2-trifluoromethylhexafluorobut-2-ene (6). A solution of trifluoroacetate 5 (49 g) in monoglyme (10 mL) was added dropwise with stirring to a suspension of Zn powder (13 g) preactivated with HgCl₂ (1.8 g) in monoglyme (110 mL). The temperature was kept at 50-60 °C. After 1 h, the mixture was poured into water, and the organic layer that formed was distilled over conc. H₂SO₄ to afford 23 g (73 %) of olefin 6, b.p. 57-58 °C, identical to that described previously 6 (19F NMR).

Reaction of alcohol 3b with SbF₅. A mixture of SbF₅ (20 g) and 3b (7 g) was stirred for 15 h at ~20 °C and then poured onto ice. The organic layer that formed was distilled over conc. H₂SO₄ to afford 4.5 g of a mixture containing (¹⁹F NMR)

oxetane 7 (57 %) and alcohol **3b** (43 %). The mixture was washed with a 20 % NaOH solution and distilled again over conc. H_2SO_4 to afford 1.8 g (26 %) of 3,3-dichloro-4,4-difluoro-2,2-bis(trifluoromethyl)oxetane (7). MS, m/z (I_{rel} (%)) (for the ions containing Cl, m/z and I for the ³⁵Cl isotope are given): 279 [M-F]+ (1.2), 232 [M-COF]+ (27.6), 229 [M-CF₃]+ (2.2), 197 [M-COF₂-Cl]+ (15.6), 166 [C₃F₆O]+ (0.4), 147 [C₃F₅O]+ (20.4), 132 [C₂F₂Cl₂]+ (26.3), 109 [C₃F₂Cl]+ (9.4), 97 [C₂F₃O]+ (25.2), 82 [CCl₂]+ (4.8), 69 [CF₃]+ (100).

A mixture of SbF₅ (25 g) and **3b** (7.8 g) was stirred for 1 h at 80 °C, and following the usual work-up was distilled as usual over cone. H_2SO_4 to afford 5 g (58 %) of 3-chloro-3,4,4-trifluoro-2,2-bis(trifluoromethyl)oxetane (8), b.p. 55–57 °C. Its ¹⁹F NMR spectrum was identical to that described previously. MS, m/z (I_{rel} (%)): 263 [M-F]⁺ (7.7), 216 [M-COF₂]⁺ (13.2), 213 [M-CF₃]⁺ (2.1), 181 [M-COF₂-Cl]⁺ (43.6), 166 [C₃F₆O]⁺ (1.7), 147 [C₃F₅O]⁺ (14), 116 [C₂F₃Cl]⁺ (29.9), 97 [C₂F₃O]⁺ (17.2), 69 [CF₃]⁺ (100).

References

- H. Tanaka, Sh. Yamashita, M. Yamanoue, and S. Torii, J. Org. Chem., 1989, 54, 444.
- Yu. V. Zeifman, Izv. Akad. Nauk, Ser. Khim., 1992, 464
 [Bull. Russ. Acad. Sci., Div. Chem. Sci., 1992, 41, 370 (Engl. Transl.)].
- Yu. V. Zeifman, S. A. Postovoi, and L. S. German, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 2159 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 1915 (Engl. Transl.)].
- 4. R. W. Lang, Helv. Chim. Acta, 1988, 71, 369.
- Chang-Ming Nu and Ming-Hu Tu, J. Fluor. Chem., 1994, 67, 10.
- A. Yu. Volkonskii, E. I. Mysov, and E. M. Rokhlin, Izv. Akad. Nauk SSSR, Ser. Khim., 1984, 1356 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1984, 33, 1246 (Engl. Transl.)].
- S. D. Chepik, V. F. Cherstkov, E. I. Mysov, A. F. Aerov, M. V. Galakhov, S. R. Sterlin, and L. S. German, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 2611 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2285 (Engl. Transl.)].
- 8. R. E. Dear, Synthesis, 1970, 561.
- V. A. Petrov, F. Davidson, and B. E. Smart, J. Org. Chem., 1995, 60, 3419.

Received November 30, 1995